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Abstract

A new brick-tetrahedron finite-element interface with stable hybrid explicit–implicit time-stepping for Maxwell’s equa-
tions is described and tested. The tetrahedrons are connected directly to the bricks, as opposed to previous curl-conforming
formulations that use an intermediate layer of pyramids. The electric field is expanded in linear edge elements, which yields
a discontinuous tangential electric field at the brick-tetrahedron interface and this discontinuity is treated by Nitsche’s
method. In addition, tangential continuity for an arbitrary constant electric field is imposed in the strong sense at the inter-
face, which makes it possible to avoid penalization that perturbs the frequency spectrum. This hybridization preserves the
null-space of the curl–curl operator and is free from non-physical spurious modes, which is confirmed by numerical tests.
The implicit Newmark time-stepping scheme is employed for the tetrahedrons, which allows for local mesh refinement
without reduced time-step. For the brick elements, spatial lumping and explicit time-stepping is employed, which yields
the standard finite-difference time-domain scheme. Furthermore, we prove that the explicit–implicit time-stepping
employed at the hybrid interface is stable for time-steps up to the Courant limit of the explicitly time-stepped bricks. Sec-
ond order of convergence is achieved for field solutions without singular behavior. The reflection from the brick-tetrahe-
dron interface is small and scattering from a thin layer of tetrahedrons indicates levels at approximately �49 dB for a
resolution of 14 cells per wavelength.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The finite-difference time-domain (FDTD) scheme [1,2] is widely used for numerical modeling of electro-
magnetic problems. Its basic formulation uses structured (Cartesian) grids which makes it simple to under-
stand, easy to implement and computationally efficient in terms of floating point operations and memory
requirements. However, modeling of oblique and curved material-boundaries suffers from the staircase
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approximation, which can introduce significant errors [3]. In contrast, the finite-element method (FEM) [4]
can exploit body conforming unstructured meshes, which makes it well suited for complex geometries and
allows for local mesh refinement. Edge elements [5] perform well for Maxwell’s equations and the implicit
Newmark scheme [6,7] allows for unconditionally stable time-stepping. However, the FEM is computationally
more expensive as compared to the FDTD scheme.

Given these two complementary techniques, it is attractive to use the efficient FDTD scheme in homoge-
neous regions combined with the flexible FEM in the vicinity of complex boundaries or regions with rapid
field variations. There is a number of alternatives on how to connect the electromagnetic field in the FDTD
region with the FEM field solution. One approach is to use interpolation at the FEM–FDTD interface [8,9] or
in a region where the FDTD and FEM discretizations overlap [10,11]. In general, interpolation yields non-
symmetric discrete operators and fails to preserve the reciprocity of Maxwell’s equations. The lack of reciproc-
ity at the interface often results in late-time instabilities due to the complex eigenvalues associated with the
non-symmetric matrix operators. The unphysical late-time instabilities can be artificially damped by e.g. spec-
tral filtering [12]. The finite-volume method in the time domain has also been used to connect unstructured
grids to an FDTD scheme [13] and the inherent late-time instabilities can be treated with a dissipative
time-integration scheme [14]. For weakly damped systems however, the artificial damping required for stable
time-stepping may dominate the physical damping phenomena of interest. Pyramidal elements [15] can be used
to construct a stable curl-conforming hybrid [16,17] that connects the FDTD scheme with the FEM formu-
lated on an unstructured grid of tetrahedrons. This type of hybridization is free from spurious solutions
and its explicit–implicit time-stepping algorithm is proven stable [17] for time steps up to the Courant limit
for the FDTD scheme without added artificial damping. In practice however, automatic mesh generation that
connects bricks, pyramids and tetrahedrons to yield a discretization appropriate for efficient hybrid computa-
tions is non-trivial and often very time consuming.

In this paper, we present a new FEM–FDTD hybrid that connects the tetrahedrons in the FEM region
directly to the FDTD cells, which eliminates the need for pyramidal elements and its difficulties. Viewed from
the FDTD region, the tangential electric field at the FEM–FDTD interface is expressed in terms of rectangular
edge elements [18]. On the other hand, the unstructured mesh exploits edge elements on tetrahedrons [4],
which on the interface spans a different space for the tangential electric field. Consequently, this type of for-
mulation allows for a discontinuous tangential electric field at the interface. We couple the FDTD and FEM
field solutions at the interface by means of Nitsche’s method [19], which is an intermediate in-between the
Lagrange multiplier method and the penalization method. Nitsche’s method can also be related to discontin-
uous Galerkin methods [20–22], where penalization is employed to weakly enforce continuous tangential elec-
tric field at all cell faces in the grid. Here, we constrain the degrees of freedom at the interface such that an
arbitrary constant electric field has a continuous tangential component. This hybrid interface preserves the
null-space of the curl–curl operator and is free from spurious solutions. We present a proof of stability for
the hybrid interface with explicit–implicit time-stepping and numerical results that demonstrate a performance
similar to previous curl-conforming hybridizations [16,17].

2. The FEM–FDTD hybrid formulation

The computational domain is discretized by brick shaped hexahedrons in homogeneous regions and tetra-
hedrons close to curved or oblique boundaries. Tetrahedrons can also be useful for local refinement, e.g. in
regions where rapid field variations are expected. The regions discretized with bricks and tetrahedrons are
referred to as Xhex and Xtet, respectively. Fig. 1 shows how the bricks and tetrahedrons are connected at
the interface C between Xhex and Xtet. Each tetrahedron face that connects to the interface C shares two edges
with its neighboring brick and, as a consequence, the third edge coincides with the diagonal of the rectangular
face of the brick.

2.1. FEM for the brick-tetrahedron interface

We let n̂ be the unit normal vector that points out from Xhex and assume constant material parameters.
Maxwell’s equations can then be formulated as



Fig. 1. A brick connected to two tetrahedrons at the interface between the FDTD and FEM regions. The interface is shaded gray.
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r� ðr �~EÞ � k2~E ¼~0 in Xhex and Xtet; ð1Þ
n̂� s~Et ¼~0 on C; ð2Þ
n̂� sr�~Et ¼~0 on C; ð3Þ
where k is the wave number and s~Et ¼ ~Etet �~Ehex is the jump of ~E at the interface C. The restriction of ~E to
Xhex and Xtet is denoted ~Ehex and ~Etet, respectively. In the following, the electric field is expanded in terms of
linear edge elements ~Nhex

i on the brick shaped hexahedrons [4] in Xhex as
~Ehex
h ¼

X
i

ehex
i
~Nhex

i ; ð4Þ
where the sub-index h indicates the cell size. Analogously, linear edge elements ~N tet
i on tetrahedrons [4] are

used as basis functions for the electric field in Xtet. At the outer boundaries of Xhex and Xtet that excludes their
common interface C, we have n̂�~E ¼~0 but other physically appropriate boundary conditions are feasible gi-
ven the application at hand.

In a conventional curl-conforming representation based on edge elements, continuous tangential electric
field at element boundaries is enforced by the discrete space [5]. Here however, the tangential field component
can be discontinuous at the brick-tetrahedron interface and therefore we use Nitsche’s method [19] to arrive at
the weak formulation
r�~wtet
h ;r�~Etet

h

� �
Xtet þ r�~whex

h ;r�~Ehex
h

� �
Xhex þ n̂� s~wht;r� ~Eh a

� �
C

þ r� ~wh a
; n̂� s~Eht

� �
C
þ c n̂� s~wht;

1

h
n̂� s~Eht

� �
C

� k2 ~wtet
h ;
~Etet

h

� �
Xtet � k2 ~whex

h ;~Ehex
h

� �
Xhex ¼ 0;

ð5Þ

where the test function is denoted ~wh, h is the element size and c is a positive constant that can be used to avoid
an indefinite stiffness matrix [19]. We use the average ~wh a

¼ a~whex
h þ ð1� aÞ~wtet

h and the inner products
ð~a;~cÞX ¼

R
X~a �~cdv and ð~a;~cÞC ¼

R
C~a �~cds.

The weak formulation (5) is consistent with the original problem in the sense that it is satisfied by the solu-
tion of Maxwell’s equations (1)–(3). Integration by parts of the curl–curl operator gives the interface term
ðn̂� s~wht;r� ~Eh a

ÞC, which is a natural consequence given the discontinuous tangential electric field at
the interface. The two additional interface terms are introduced since ðr � ~wh a

; n̂� s~EhtÞC yields symmetry
and c n̂� s~wht;

1
h n̂� s~Eht

� �
C

allows for stabilization of the stiffness matrix.
Galerkin’s method is applied to the weak formulation (5) and its matrix representation is
ðSþ SA þ cSBÞe ¼ k2Me; ð6Þ
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where e is the vector of unknowns and
Sij ¼ r� ~N tet
i ;r� ~N tet

j

� �
Xtet
þ r� ~Nhex

i ;r� ~Nhex
j

� �
Xhex

; ð7Þ

SA
ij ¼ n̂� s~N it;r� ~N hex

j

� �
C
þ r� ~Nhex

i ; n̂� s~Njt
� �

C
; ð8Þ

SB
ij ¼ n̂� s~N it;

1

h
n̂� s~Njt

� �
C

; ð9Þ

Mij ¼ ~N tet
i ;
~N tet

j

� �
Xtet
þ ~N hex

i ; ~Nhex
j

� �
Xhex

; ð10Þ
where we have chosen a = 1. (It is common to choose a = 1/2 in discontinuous Galerkin formulations [21,22].)
For a curl-conforming formulation, the stiffness matrix is positive semi-definite and its null-space is

spanned by the electrostatic field solutions ~E ¼ �r/. Here, the stiffness matrix is S + SA + cSB, where S is
positive semi-definite and SB is positive definite. The curl–curl operator can be stabilized by a sufficiently large
c, which is a necessary countermeasure if the combination S + SA is indefinite. However, c > 0 may also imply
that the discretized curl–curl operator yields a non-zero result (and eigenfrequency) when applied to a static
electric field ~E ¼ �r/. The work by Hansbo and Larson [23] on the discontinuous Galerkin method and the
Crouzeix–Raviart element demonstrates that the terms that correspond to Eq. (8) in elasticity vanish for the
linear approximation since its jump averages to zero on inter-elemental boundaries. The present situation with
edge elements is somewhat more involved, e.g. the spatial derivative of the linear edge elements ~N hex

i that fea-
tures in Eq. (8) is piecewise linear on C. As opposed to the conventional application of Nitsche’s method, we
proceed from this point in the following manner.

We set ehex
i ¼ etet

i ¼ ei for the edges i = f1, f2, n1 and n2 in Fig. 1. For the degree of freedom etet
d associated

with the edge that lie on the diagonal of the brick’s face, we enforce
etet
d ¼

ln

ld

en1 þ en2

2
þ lf

ld

ef1 þ ef2

2
; ð11Þ
where li is the length of edge i. This yields a continuous tangential component at the interface C for an arbi-
trary constant electric field and a piecewise linear representation of the scalar potential / that spans the null-
space~E ¼ �r/ of the operator S + SA. Wu and Itoh [8] and Monorchio et al. [24] used Eq. (11) to interpolate
the solution in the FDTD region and construct a Dirichlet boundary condition for the FEM region, in a man-
ner that gives a non-symmetric operator at the interface and time-stepping instabilities. Here, we use Eq. (11)
differently in the sense that we eliminate the degree of freedom etet

d associated with the diagonal. Our approach
gives a constraint that is implemented by means of the modified basis functions
g~N tet
f1 ¼ ~N tet

f1 þ
lf

2ld

~N tet
d ; ð12Þ

g~N tet
f2 ¼ ~N tet

f2 þ
lf

2ld

~N tet
d ; ð13Þ

g~N tet
n1 ¼ ~N tet

n1 þ
ln

2ld

~N tet
d ; ð14Þ

g~N tet
n2 ¼ ~N tet

n2 þ
ln

2ld

~N tet
d ð15Þ
associated with the interface.
After some rather lengthy calculations based on the modified basis functions (12)–(15), the surface integrals

(8) give SA = 0 and the resulting stiffness matrix is S + cSB. Finally, we set c = 0 to avoid electrostatic solu-
tions with non-zero eigenfrequencies and the discretized problem that corresponds to Eqs. (1)–(3) is
Se ¼ k2Me: ð16Þ
This discretization preserves the reciprocity of Maxwell’s equations, which is an essential prerequisite for sta-
ble time-stepping [17].
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2.2. Temporal discretization

The time-domain problem derived from Eq. (16) is time-stepped by the algorithm [17]
XK

k¼1

Sk hkeðnþ1Þ þ ð1� 2hkÞeðnÞ þ hkeðn�1Þ� 	
þ 1

ðcDtÞ2
Mk eðnþ1Þ � 2eðnÞ þ eðn�1Þ� 	 !

¼ 0; ð17Þ
where c is the speed of light, K is the number of elements and Sk is the contribution from element k to the
stiffness matrix such that S ¼

PK
k¼1Sk. The same partitioning is applied to the mass matrix M. The time-step-

ping scheme (17) associates the implicitness parameter hk with the elements. For the tetrahedrons, we use
hk = 1/4 and this choice gives the unconditionally stable Newmark scheme [6,7]. For the bricks, we set
hk = 0 and employ spatial lumping, which yields the explicit FDTD time-stepping scheme [18]. Thus, the
two time-stepping schemes are hybridized at the interface. This type of FEM that combines exact integration
with lumping based on trapezoidal integration is also known as tunable integration [25].

2.3. Proof of stability

Here, we present the outline for a proof of stability for the hybrid formulation. Further details can be found
in Ref. [17], where it is applied to a curl-conforming hybrid. On a brick element, the eigenvalue problem (16)
yields the quadratic form
eH Ske 6 kmaxeH Mke; ð18Þ

where e is the vector of unknowns, eH is its complex transpose and
kmax ¼ 4
1

h2
x

þ 1

h2
y

þ 1

h2
z

 !
; ð19Þ
with the cell dimensions denoted hx, hy and hz. This gives the Courant condition cDt 6 2=
ffiffiffiffiffiffiffiffiffi
kmax

p
for the FDTD

time-step [2,26].
We prove stability of the hybrid by the von Neumann method [26]. Let ~e be a complex eigenmode of (17)

and assume it has a growth factor q such that eðnÞ ¼ qn~e. Stability is equivalent to jqj 6 1 for all modes and the
substitution q = (1 + f)/(1 � f) gives the stability condition Rffg 6 0. The time-stepping scheme (17) yields
the quadratic form
XK

k¼1

~eH Sk~e ¼ �f2
XK

k¼1

~eH 4

ðcDtÞ2
Mk þ Skð4hk � 1Þ

" #
~e ð20Þ
for mode ~e, where f2 must be real since all matrices are Hermitian. The contribution from the implicit elements
to the sum on the right-hand side of Eq. (20) is positive if hk P 1/4 for these elements. Eq. (18) implies that the
contribution from the explicit elements is non-negative if the Courant condition is satisfied. Thus, the hybrid is
stable for time steps up to the Courant limit if hk P 1/4 for the tetrahedrons.

3. Numerical results

3.1. Resonance frequencies for cubic cavity

As a first test case, we compute the resonance frequencies for a cubic cavity of side a. The cavity is divided into a
basic grid of cube shaped cells of side h = a/N, where N is a positive, even integer. The computational mesh con-
sists of the cubes in the upper half of the cavity and a mesh of tetrahedrons is constructed in the lower half by
splitting each cube in that region into 12 tetrahedrons. The hybrid mesh for N = 4 is shown in Fig. 2.

The generalized eigenvalue problem (16) is solved for N = 6 and Fig. 3 shows the 10 lowest non-zero res-
onance frequencies by circles together with the expected analytical values shown by crosses. The multiplicity of
the lowest eigenmodes is correct and there is no spectral pollution. Furthermore, the number of zero eigen-
values, that all stem from electrostatic modes, equals the number of interior nodes in the mesh as expected.



Fig. 2. Cubic cavity discretized with cubes in the upper half and tetrahedrons in the lower half.

Fig. 3. The 10 lowest non-zero normalized resonance frequencies of a cubic cavity with perfectly conducting metal walls. Eigenvalues
computed with the new hybrid are shown by circles and the analytical values are shown by crosses.
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Fig. 4 shows the relative error for the eigenfrequencies as a function of spatial resolution for N/2 = 1,2, . . . , 8.
Second order convergence is achieved, which is expected for a FEM with linear elements applied to a problem
with a regular solution. These results are similar to the results in Ref. [16], where the same problem is solved by
a curl-conforming hybrid formulation with pyramidal elements.

3.2. Reflections from tetrahedron layer

One possible drawback of hybrid formulations is the reflection that occurs at the interface between the
brick and tetrahedron meshes. Here, we study such reflections for a thin cross-sectional layer of tetrahedrons
placed in a homogeneous rectangular waveguide discretized by the FDTD scheme. A TE10-mode is inserted at
one end of the waveguide and propagated through the waveguide. Here, the reflection coefficient is chosen as
the ratio of the maximum amplitude of the reflected and transmitted waves. The waveguide with the implicit
region indicated and the incident wave is shown in Fig. 5.

In the following computations, the excitation amplitude for the TE10-mode is exp �ðt � t0Þ2=d2
0

h i
sinð2pftÞ,

where t0 = 6.25/fc, d0 = 2.5/fc, f ¼
ffiffiffi
2
p

fc and fc is the cutoff frequency for the TE10-mode. The cross-section of



Fig. 4. The relative error for normalized resonance frequencies j = ka/p of the 10 lowest modes in a cubic cavity of side a. Second order
convergence order is achieved with respect to k/h, where k = 2pc/x and the analytical eigenfrequency is x.

Fig. 5. Schematic view of the waveguide and the incident TE10-mode. The layer in the middle of the waveguide is discretized by
tetrahedrons and the rest of the waveguide is discretized by cubes.
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the waveguide is discretized by 5 · 10 FDTD cubes and the implicit region with tetrahedrons is two FDTD
cells thick. The power reflection coefficient is shown in Fig. 6 for 1/4 6 h 6 1/2 applied to the tetrahedrons
and time steps that satisfy 1=2 6

ffiffiffi
3
p

cDt=h 6 1. The power reflection is almost constant in the region below
the �49 dB level contour, where the dominant source of error is related to the spatial discretization. Addi-
tional computations for the case when Dt tends to zero with h = 1/4 shows that the power reflection
approaches �49.4 dB, which is 2.5 dB lower than for the curl-conforming hybrid [17]. This reduction is rather
constant for time steps up to the Courant limit for h = 1/4.

Also, we perform a convergence study of the reflection coefficient with respect to the cell size. The dimen-
sions of the waveguide are fixed and the thickness of the implicit tetrahedron layer is 2h. The time-step is
Dt ¼ h= c

ffiffiffi
3
p� �

for all resolutions and we use h = 1/4 for the tetrahedrons. The reflection coefficient is shown
in Fig. 7 together with the corresponding results for the curl-conforming hybrid [17], where pyramids are used
Fig. 6. Contour plot for the power reflection coefficient for 14 cells per wavelength. The thin lines are separated by 0.1 dB.



Fig. 7. Power reflection coefficient for h = 1/4 and Dt ¼ h= c
ffiffiffi
3
p� �

: new hybrid – solid line with circles; curl-conforming hybrid with exact
integration – dashed line with squares; and curl-conforming hybrid with trapezoidal integration – dashed line with crosses.
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to connect the FEM tetrahedrons to the FDTD cubes. The new hybrid reduces the reflection coefficient by
2.5 dB as compared to the curl-conforming hybrid with exact integration for the pyramids. In this particular
test case, trapezoidal integration employed over the base of the pyramids reduces the reflection for the curl-
conforming hybrid. However, it has been demonstrated [17] that trapezoidal integration slightly deteriorates
the accuracy when the curl-conforming hybrid is applied to scattering from a perfectly conducting metal
sphere. The power reflection coefficient varies as h5.7 for both the new and the curl-conforming hybrid [17].

3.3. Resonance frequencies in a cavity containing a sphere

Consider a brick shaped cavity discretized by a hybrid grid that conforms to a small spherical surface. The
interior of the sphere and its immediate vicinity is discretized by tetrahedrons while the rest of the cavity is
discretized by FDTD cubes of size h. The cavity measures 9h, 12h and 13h in the x-, y- and z-directions respec-
tively. The sphere has a radius h and is centered at (4.5h, 5.5h, 7.5h). The grid for the sphere is shown in Fig. 8
together with the interface between the tetrahedrons and the cubes for y > 4h.
Fig. 8. A section of the implicit grid where the region closest to the sphere is discretized by tetrahedrons. The first layer of cubes outside
the tetrahedron region is also shown.



Fig. 9. Spectrum for the empty cavity. Analytical resonance frequencies are shown with vertical dashed lines.
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For a homogeneous brick cavity, the analytical eigenfrequencies are available and we study this case with
the hybrid grid shown in Fig. 8, where the interior of the sphere is discretized by tetrahedrons. We choose
h = 1 mm, h = 1/4 and Dt ¼ h= c

ffiffiffi
3
p� �

for an empty cavity. A random field distribution is used as the initial
condition for the time-stepping. The resonance frequencies are estimated from the peaks found in the Fourier
transform of the time-domain solution e(n). Fig. 9 shows the spectrum computed from a time-domain response
of 100,000 time steps, where the lowest oscillations are captured by a set of components in e(n) that are linearly
Table 1
Resonance frequencies for the empty cavity computed by the new hybrid

Mode indices f [GHz] Error [%]

Hybrid Exact

011 16.98 17.00 �0.1
101 20.22 20.26 �0.2
110 20.78 20.82 �0.2
111 23.78 23.80 �0.1
012 26.12 26.23 �0.4
021 27.37 27.52 �0.5
102 28.35 28.45 �0.3
120 29.90 30.03 �0.4
112 31.02 31.07 �0.2
121 32.08 32.16 �0.2

The analytical values and relative errors are also included for comparison.

Table 2
Resonance frequencies for the cavity containing a perfectly conducting metal sphere computed by the new hybrid, a curl-conforming
hybrid and a TLM based code

Mode number f [GHz]

New hybrid Curl-conf. hybrid TLM

1 16.58 16.56 (�0.11%) 16.64 (0.36%)
2 19.70 19.66 (�0.18%) 19.80 (0.51%)
3 20.23 20.19 (�0.20%) 20.34 (0.54%)
4 23.71 23.69 (�0.07%) 23.73 (0.08%)
5 23.74 23.73 (�0.06%) 23.75 (0.04%)
6 26.06 26.05 (�0.06%) 26.14 (0.31%)
7 27.47 27.46 (�0.02%) 27.56 (0.33%)
8 28.24 28.22 (�0.08%) 28.32 (0.28%)
9 29.91 29.88 (�0.10%) 29.97 (0.20%)

The deviation shown within parentheses is relative to the new hybrid.
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combined. The resonance frequencies are determined with high accuracy by means of a Padé approximation fit
[26,27] and the first 10 modes are shown in Table 1 together with the expected analytical values. There is no
pollution of the spectrum and the deviation from the analytical values is small. As well as the other test cases,
this long-run simulation confirms that the new hybrid does not suffer from late-time instabilities.

Next, the sphere is modeled as a perfectly conducting metal object. In this case, no analytical solution exist
and we rely on comparisons with other numerical results [16] for verification. Table 2 shows the first few res-
onances computed by the new hybrid formulation together with the corresponding results obtained by a curl-
conforming hybrid [16] and a generalized transmission line method (TLM) [28,29]. The FDTD meshes used
for the hybrid computations have 9 · 12 · 13 cells while the basic grid of the TLM computation has
18 · 24 · 32 cells. The results obtained with the new hybrid is in-between the results for the curl-conforming
hybrid and the TLM computations for all modes in Table 2.

4. Conclusions

We have presented a new brick-tetrahedron finite-element interface with stable hybrid explicit–implicit
time-stepping for Maxwell’s equations. The finite-element method (FEM) is employed on a discretization
where the tetrahedrons are connected directly to the brick shaped elements. The discontinuity in the tangential
electric field at the interface is treated by means of Nitsche’s method. For an arbitrary constant electric field,
tangential continuity at the interface is enforced in the strong sense. Galerkin’s method applied to the self-
adjoint Maxwell’s equations gives symmetric discretized spatial operators. This construction yields a hybrid-
ization that is free from unphysical spurious modes and preserves the null-space of the curl–curl operator. The
Newmark scheme applied to the tetrahedrons is combined with an explicit central-difference time-stepping
algorithm for the spatially lumped bricks, which is equivalent to the finite-difference time-domain (FDTD)
scheme. This construction allows for local mesh refinement in the tetrahedral region and the hybridized
FEM–FDTD interface is proven stable up to the Courant limit for the FDTD region.

For a cubic cavity discretized by a hybrid grid, the eigenvalue problem yields accurate resonance frequen-
cies: 1% accuracy for about 10 cells per wavelength; no spectral pollution; correct multiplicity; preserved null-
space of the curl–curl operator; and second order of convergence. Scattering from a thin cross-sectional layer
of tetrahedrons embedded in a rectangular waveguide discretized by FDTD cubes indicates low reflection
from the FEM–FDTD interface: a resolution of 14 cells per wavelength yields approximately �49 dB for
the power reflection coefficient and it converges as h5.7. The resonance frequencies for a cavity with a hybrid
mesh that conforms to a small sphere agree well with the results computed by a curl-conforming hybrid and a
generalized transmission line method. A long-run computation with 100,000 time steps show no indication of
late-time instabilities. In fact, all tests confirm that the hybrid is robust, accurate and stable.

The brick-tetrahedron interface does not require special elements such as pyramids to connect the tetrahe-
drons to the FDTD cells. (The edge element basis functions on pyramids are not polynomial, which is uncon-
ventional and require special numerical treatment.) From a practical point of view, our new brick-tetrahedron
interface simplifies mesh generation considerably without sacrificing stability or accuracy. Tetrahedral grids
tailored for efficient hybrid computations can be constructed by commercially available tools, which paves
way for automatized computations with parametric geometry representation. This is an important step
towards industrial parametric studies, and ultimately optimization, of microwave devices with respect to
the geometry.
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difference time-domain technique and the Padé approximation, IEEE Microw. Guid. Wave Lett. 8 (12) (1998) 415–417, doi:10.1109/
75.746760.

[28] M. Celuch-Marcysiak, W. Gwarek, Generalized TLM algorithms with controlled stability margin and their equivalence with finite-
difference formulations for modified grids, IEEE Trans. Microw. Theory Tech. 43 (9) (1995) 2081–2089, doi:10.1109/22.414544.

[29] QWED s.c., Zwyciezcow 34/2, 03-938 Warsaw, Poland, QuickWave-3D FDTD simulator manual, second ed., April 2002.

http://dx.doi.org/10.1109/8.558658
http://dx.doi.org/10.1109/8.611251
http://dx.doi.org/10.1109/75.658652
http://dx.doi.org/10.1109/22.643819
http://dx.doi.org/10.1098/rsta.2003.1330
http://dx.doi.org/10.1098/rsta.2003.1330
http://dx.doi.org/10.1109/8.761061
http://dx.doi.org/10.1109/75.410398
http://dx.doi.org/10.1109/74.583516
http://dx.doi.org/10.1109/20.497507
http://dx.doi.org/10.1016/S0010-4655(99)00463-4
http://dx.doi.org/10.1006/jcph.2002.7063
http://dx.doi.org/10.1109/20.376343
http://dx.doi.org/10.1016/j.cma.2005.06.011
http://dx.doi.org/10.1051/m2an:2003020
http://dx.doi.org/10.1109/TAP.2004.834431
http://dx.doi.org/10.1016/0010-4655(91)90065-S
http://dx.doi.org/10.1109/75.746760
http://dx.doi.org/10.1109/75.746760
http://dx.doi.org/10.1109/22.414544

	A brick-tetrahedron finite-element interface with stable hybrid explicit-implicit time-stepping for Maxwell " s equations
	Introduction
	The FEM-FDTD hybrid formulation
	FEM for the brick-tetrahedron interface
	Temporal discretization
	Proof of stability

	Numerical results
	Resonance frequencies for cubic cavity
	Reflections from tetrahedron layer
	Resonance frequencies in a cavity containing a sphere

	Conclusions
	References


